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We say that a normed linear space X is a R(1) space if the following holds: If Y
is a closed subspace of finite codimension in X and every hyperplane containing Y
is proximinal in X then Y is proximinal in X. In this paper we show that any closed
subspace of c0 is a R(1) space. � 1999 Academic Press

Sometimes, but not always, finite codimensional subspaces Y of a
Banach space X are proximinal when every hyperplane of X containing Y
is itself proximinal (see [2]). When this happens, we say, following [5],
that X is a R(1) space. Non trivial examples of R(1) spaces are usually
obtained through some smoothness condition on the space X* (see e.g.
[5], Prop. 1). However, the space c0 is easily seen to be a R(1) space
although its dual l1 is very far from smooth. We show in this paper that
the R(1) property extends to subspaces of c0 . We will do so by using a
remote form of smoothness in l1, namely a strong form of subdifferen-
tiabilty for norm attaining functionals in l1.

We consider only real normed linear spaces. Let X be a normed linear
space. Then X* denotes its dual. The closed unit ball and the unit sphere
of X are denoted by B(X) and S(X) respectively. By NA(X), we denote the
subset of X*, consisting of all the norm attaining functionals on X. For
x # X, we set

M(x)=[g # S(X*) : g(x)=&x&].

If Y is a subspace of X, we say that Y is proximinal in X if every x # X has
a nearest element from Y. That is, there exists z # Y such that

&x&z&=d(x, Y)=inf[&x& y& : y # Y].
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If Y is a closed subspace of X, the annihilator of Y, denoted by Y=, is given by

Y==[ f # X* : f ( y)=0 for all y # Y]

Finally, if Q is a compact Hausdorff space, C(Q) denotes the space of all
real valued, continuous functions defined on Q with the sup norm.

In 1963, Garkavi [3] gave the following easily checked but useful
characterization of proximinal subspaces of finite codimension in terms of
the finite dimensional annihilator spaces.

Theorem A (Garkavi [3]). Let Y be a closed subspace of finite
codimension in a normed linear space X. Then Y is proximinal if and only if
for each 8 # B((Y=)*), there exists x # X such that

&8&=&x&

and

8( f )= f (x) for all f # Y =.

It immediately follows from the above theorem that if Y is a proximinal
subspace of finite codimension in X then Y=�NA(X) or equivalently every
hyperplane containing Y is proximinal in X. However the converse is far
from true as the following slight modification of an example of Phelps [6]
shows. In fact, this example shows that any infinite dimensional C(Q)
space, where Q is a compact Haussdorff space, contains a subspace Y of
codimension 2 such that Y=�NA(X) but Y is not proximinal in C(Q).
Before giving the example, we quote a characterization, due to Garkavi, of
proximinal subspaces of finite codimension in C(Q) that is needed to com-
plete the example. In the following, S(+) for + # (C(Q)*) denotes the
support of the measure +.

Theorem B (Garkavi [4]). Let Y be a closed subspace of finite
codimension in C(Q). Then Y is proximinal if and only if the annihilator
space Y= satisfies the following three conditions:

(i) S(++) & S(+&)=< for each + # Y="[0].

(ii) + is absolutely continuous with respect to & on S(&) for every pair
+, & in Y="[0].

(iii) S(&)"S(+) is closed for each pair +, & in Y="[0].
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Example [5]. Select a sequence (qn) in Q with qn {qm for n{m,
which has a cluster point q0 # Q with q0 {qn for n=1, 2, ... . Define
+, & # (C(Q))* by

+= :
�

n=1

1
2n $qn

+$q0

&= :
�

n=1

1
4n $qn

where $q denotes the evaluation functional at q # Q. Let

Y=[x # C(Q) : +(x)=0 and &(x)=0]

Then Y= is the two dimensional subspace generated by + and &. If : is any
scalar and 2n>&:,

(++:&)(qn)=
1
2n+

:
4n>0

This implies that for any * # Y=, we have S(*+) & S(*&)=< or equiv-
alently Y=�NA(C(Q)). However Y is not proximinal in C(Q) since condi-
tion (ii) of Theorem B does not hold for + and &.

We recall that a finite dimensional real normed space is polyhedral if its
unit ball has finitely many extreme points. We proceed with the following
characterization of finite dimensional polyhedral spaces which is needed in
the proof of our main Theorem 3, and which is a special case of ([8],
Theorem 4.4.).

Lemma 1. Let E be a finite dimensional normed linear space. Then E is
polyhedral if and only if for each x # S(E) there exists =(x)>0 such that
y # S(E) and &x& y&<=(x) implies M( y)�M(x).

Proof. Assume E is polyhedral. Then ext(B(E)) is a finite set
[x1 , x2 , ..., xk]. Select any x # S(E) and let ( yn)�S(E) converge to x. It
suffices to show that M( yn)�M(x) eventually.

Since B(E) is the convex hull of its extreme points, we can write

yn= :
k

i=1

+n
i xi , n=1, 2...

where +n
i �0 for all 1�i�k and n�1, and moreover �k

i=1 +n
i =1 for all n.
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Taking a subsequence if necessary, we can assume that limn � � +n
i =+i

exists for each i, 1�i�k. Since the sequence ( yn) converges to x we have

x= :
k

i=1

+i xi

Let =(x)=min[+i : +i {0]. Then =(x)>0 and there is a positive integer
n0 such that

max
1�i�k

|+i&+n
i |<=(x) (1)

for all n�n0 . Now if 8 # M( yn) for some n�n0 , we have

8( yn)=&yn&=1= :
k

i=1

+n
i 8(x i)

and this together with (1) implies

[i : +i {0]�[i : +n
i {0]�[i : 8(xi)=1].

Hence

8(x)= :
k

i=1

+i8(x i)= :
k

i=1

+i=1

and 8 # M(x). That is, M( yn)�M(x) for all n�n0 .
Conversely assume that E satisfies the condition of the lemma. To show

that E is polyhedral, we first observe that since E is finite dimensional,
S(E) is a compact set. This, together with our assumption about E,
implies that we can get a finite subset F of S(E) such that for any
y # S(E), M( y)�M(x) for some x # F. Choose any f # S(E*). Then by
compactness of B(E), f # M( y) for some y # S(E) and hence f # M(x) for
some x # F. Hence every f # S(E*) attains its norm at some point of the
finite set F of S(E). This, in turn, implies that E* is polyhedral. Hence E
is polyhedral. This concludes the proof of Lemma 1. K

We now consider a closed subspace X of the sequence space c0 and a
closed subspace Y of X which is of finite codimension in X. We will now
show that if Y= is contained in NA(X), then Y= is polyhedral. In order to
do this, we show that the finite dimensional space Y= satisfies the condi-
tion of Lemma 1.

Lemma 2. Let X be a closed subspace of c0 and Y be a closed subspace
of X that is of finite codimension in X. Assume further that the annihilator
Y= of Y in X* is contained in NA(X). Then Y= is polyhedral.

178 GODEFROY AND INDUMATHI



Proof. We will prove that if g # NA(X) with &g&=1, then there exists
=(g)>0 such that h # S(X*) and &h& g&<=(g) would imply M(h)�M(g).
This together with Lemma 1 would complete the proof of this lemma.

Clearly, we only need to show that if g # NA(X) with &g&=1 and
(hn)�S(X*) converges to g then M(hn)�M(g) eventually. We denote by
Q the canonical quotient map from l1=c0* onto X*. The bidual of X is
identified to the subspace X== of (l1)*=l� . Pick Hn in the unit sphere of
l1 such that Q(Hn)=hn . Taking a subsequence if necessary, we may and do
assume that the sequence Hn converges weak* to G # l1 . We clearly have
Q(G)= g.

For any H in l1, we denote by

Supp(H)=[k�1; H(ek){0]

where (ek) is the natural basis of c0 . Using the notation M(.) as defined
above, we clearly have

M(hn)=M(Hn) & X== (2)

and

M(g)=M(G) & X== (3)

If we denote by t=(tn) vectors in l� , we check easily that for any H # l1

we have

M(H)=[t # S(l�); tk=sign(H(ek)) for all k # Supp(H)] (4)

We observe now that G # NA(c0). In fact, since g # NA(X), G attains its
norm at some point of the unit sphere of X. It follows easily that Supp(G)
is a finite set. Hence there exists N such that for all n�N, we have
Supp(G)/Supp(Hn) and

sign(Hn (ek))=sign(G(ek))

for all k # Supp(G). Now it follows from (2) that M(Hn)�M(G) for n�N
and then (3) and (4) show that the conditions of Lemma 1 are satisfied.
This concludes the proof of Lemma 2. K

We can now present our main result.

Theorem 3. Every closed subspace of c0 is a R(1) space.

Proof. Let X be a closed subspace of c0 and Y be a closed subspace of
finite codimension in X. Assume that the annihilator Y= of Y in X is con-
tained in NA(X). We need to show that Y is proximinal in X.
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By Lemma 2, we know that the finite dimensional space Y= is
polyhedral. Thus every extreme point of B((Y=)*), the unit ball of the dual
space (Y=)*, is in fact exposed. Select any such 8 # ext(B(Y=)*) and a
linear functional f # S(Y=) that exposes 8. Since Y=�NA(X), there is
x # X such that &x&=1 and f (x)=& f &=1. Since f exposes 8,

8(h)=h(x) for all h # Y=

and of course

&8&=&x&=1.

Thus Garkavi's criterion, given in Theorem A, is satisfied for each
8 # Ext B((Y=)*). Since B((Y=)*) is the convex hull of its extreme points,
it easily follows that Garkavi's criterion holds for any 8 in the unit ball of
(Y=)*. Thus Y is proximinal in X by Theorem A, and this concludes the
proof of Theorem 3. K

Remarks. (a) The set NA(c0) is equal to the space of finitely supported
elements of l1 and it is therefore a vector space of countable algebraic
dimension. Hence if X is a subspace of c0 , NA(X) is contained in a vector
subspace of X* of countable algebraic dimension. It follows from Baire
category theorem that if Y is a subspace of X such that Y= is contained in
NA(X), then the codimension of Y in X is finite, and Y is proximinal in X
by Theorem 3.

(b) It is easy to deduce from Theorem 3 that if X is a subspace of c0 ,
the following assertions are equivalent: (i) NA(X) is a vector subspace
of X*. (ii) The intersection of two proximinal hyperplanes is proximinal.
(iii) The intersection of a finite number of proximinal hyperplanes is
proximinal. Any finite codimensional proximinal subspace X of c0 satisfies
these conditions. On the other hand, there is an hyperplane of c0 which
fails to satisfy them. Indeed, let

E=(1�2, 1�2, 1�4, 1�8, 1�16, ...)

be in l1, and let X=Ker(E). Moreover, let g1=(1, 0, 0, 0, ...) and
g2=(0, 1, 0, 0, ....) be the restrictions to X of the corresponding elements of
l1. It is easy to check that g1 and g2 belong to NA(X), however
(g1+ g2) � NA(X). Very little seems to be known about Banach spaces
which have an equivalent norm such that the set of norm attaining func-
tionals for this norm is a vector subspace of the dual space. It follows from
[1], [7] and James' characterization of reflexivity that no such norm exists
on a non reflexive space with the Radon�Nikodym property.
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